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The results of investigations using the PODMODELI (SUBMODELS) program, which is aimed at the exhaustive use of the 
symmetry of the gas dynamics equations to construct classes of exact solutions (submodels) of these equations, are summarized. 
The starting point is the fact that any Lie group of transformations of the basis space (of all independent and dependent variables) 
which is admitted by the gas dynamics equations can generate certain submodels. In order to describe the infinite set of submodels 
which arises from this in a compact manner, a number of techniques for ordering them is proposed: with respect to the equation 
of state of a gas, using a similarity criterion, according to their types (rank, defect), with respect to the property of evolutionarity 
and according to the criterion of regularity. Examples of new submodels are presented. The most significant work carried out 
using the PODMODELI program up to the present time is indicated in a list of references. 0 1999 Elsevier Science Ltd. All 
rights reserved. 

Suppose a system E of differential equations for the required functions u of the independent variables 
x is given. The idea behind the PODMODELI (SUBMODELS) program is associated with the property 
of the symmetry of the system E and, in fact, its invariance with respect to a Lie group of transformations 
of the basis space (the sets of allx, u). The final aim of the PODMODELI program lies in exhausting 
all possibilities which are made available by this property to construct the exact solutions of system E. 

This paper is concerned with the presentation of certain results of the implementation of this program 
in the case of the gas dynamics equations. 

1. OBJECT OF THE INVESTIGATION 

The system of differential equations of gas dynamics 

pDu+Vp=O, Dp+pdivu=O, PS=O 

is considered with the equation of state 

(1.1) 

P = FM. s) (l-2) 

defined in the basis space R”(t, x, u, p,p, S) with a time t, coordinates x = (x,y, z) = (x1,x2,x3), velocity 
vector u = (u, v, w) = (u’, u2, u3), density p, pressurep and entropy S. The total differentiation operator 
D = ~3, + uV, V = (a,, a,,, 3,). It is assumed that the gas is normal, that is, the function F in (1.2) is such 
that F > 0, Fp > 0, Fs > 0. The speed of sound c > 0 is determined by the relation c2 = F&p, S). 

The property of symmetry of the system of gas dynamics equations lies in the fact that the system is 
invariant with respect to the 11-parameter Lie group, Gti of transformations of the basis space (it is 
also said that this system admits the group Gii), which is conveniently written in terms of the corres- 
ponding Lie algebra LI1 of operators acting in this space. The basis in Lii (the operators Xi, X2, . . . , 
XI,) is chosen as 

Xi =Q Xi+3 =tdxj +Jyi* Xi+6 = E: (xiaxk + uiaux ) (i = 1,2,3) 

(1.3) 
x,, =&, x,, = tat +xiax, 
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----- k where 3t b/Ot, ~xi ~-- O/t~'J, etc., eii is a standard skew-symmetric tensor w i t h  1~2 = 1 and it is assumed 
that summation is carried out over repeated indices [1, 2]. 

Remark. The entropy S is determined, apart from the substitution S ~ tp(S), with an arbitrary, non-constant 
function tp. This transformation of the entropy, which is an equivalence transformation for the equation of state 
and is always admitted by the gas dynamics equations, is only taken into account below in writing the equation of 
state. 

In the case of an equation of state (1.2) of general form, the algebra Ll l  is the widest Lie algebra of 
operators which are admitted by the system of gas dynamics equations. 

2. C L A S S I F I C A T I O N  A C C O R D I N G  TO THE E Q U A T I O N  OF STATE 

Depending on the form of the equation of state (1.2), 13 cases of extension of the admissible Lie algebra 
are distinguished. In particular, in the case o f  a polytropic gas with an equation of state p = Sp y, the 
Lie algebra Ll l  is extended to L13 by means of the operators 

XI3 = ta t - uiOd + 2pOp, Xi4 ---- p~p 4" p ~ p  (2.1) 

for an arbitrary value of the adiabatic index y. If, however, ~, = 5/3, then a further operator 

Xi2 = t2Ot + tXiOx, + (X i -- tUl)~u i - 3tpOp -- 5tpO p (2.2) 

which extends L13 to L14 , is added to the operators (2.1). A complete list of all extensions is given in 
[1]. 

In the analysis of the submodels obtained it turns out to be advisable to pick out the special models 
of the gas motions which are indicated below, together with the corresponding systems of differential 
equations. 

Isentropic models. (S = So = const) with an equation of state p = F(p, So) 

where a(p) = c2/p. 

Du + a(p)Vp = 0, Dp + p div u = 0 (2.3) 

Barochronous models. (p = p(t)) with an equation of state p(t) = F(p, S) 

Du = O, div u = a(t, S), DS = 0 (2.4) 

where a(t, S) = -p'(t)/pc 2. In the case of a polytropic gas a = a(t) = -P'/2O. Isobaric models are a special 
case of barochronous models for which p = const, a = 0. 

Thermal models. (p = P0 = const > 0) with an equation of state p = F(p0, S). 

D u + V p = 0 ,  d i v u = 0 ,  D p = O  (2.5) 

Isothermal models. (c = const) with an equation of state (1.2). IfFps ~ 0, then system (1.1) reduces 
to (2.5). In the case when Fps = 0, one of the classification versions of the extension of the admitted 
group described in [1] arises. 

Special models, of course, admit of the group Gll. However, with the exception of the isentropic 
models, the widest groups which are admitted by these models have still not been calculated and even 
system (2.5) has not been reduced to an involution up to this point. 

3. C O N S T R U C T I O N  OF S U B M O D E L S  

Each submodel is generated by a certain subgroup H of an admitted group and, in this case, it is 
called an H-submodel. 

We recall the general procedure for constructing H-submodels in the case of an admitted group 
H of the system of equations E specified in the basis space Rn+m(x, u) with the required functions 
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u = (u 1 . . . .  , u m) of the independent variablesx = (x 1 . . . . .  x~). Suppose I = (11 . . . .  ,/4) is the complete 
set of functionally independent invariants F = F(x, u) (j = 1 . . . . .  l) of the group H (its universal invariant) 
and suppose Rt(/) is the space o f  the invariants. A manifold M, specified by a certain number p > 0 of 
independent scalar equations, is picked out in Rt(/). Here, it is necessary that It ~< m. The dimension 
of M in R'(/) is equal to ~ = l - It. In the space/U*m(x, u), the manifold M has a dimension n + m - 
It = n + ~i which leads to the relation 

t~ = 8 + l - m  (3.1) 

In order to satisfy these conditions, the subsets u' = ( u l , . . . ,  um-~), F = (11 . . . . .  1 ~-~) are found for 
which 

det (¢)I'/¢)u') ~ 0 

and the o of invariants of the subset 1" = (/,,,~+1 . . . .  ,/4) is independent of the quantities u'. Then, 
using the variables 

o = r (x ,  u), y -- t"(x;  u'3 (3.2) 

the equations of the manifold M can be written in the form 

u=V(y) (3.3) 

The quantities u'" = (U m-~5+l . . . . .  u m) occurring in (3.2) are called "superfluous" functions. As a result of 
substituting the expressions for u" obtained from (3.3) into the system E, a factor system E/H is obtained 
which decomposes into two subsystems: an invariant subsystem for the required functions V(y) and an 
additional, generally speaking, overdetermined subsystem for the superfluous functions u". The number t~, 
which is equal to the number of independent variables in the invariant subsystem, is called the rank and 
the number 5, which is equal to the number of"superfluous" functions u", is called the defect of the submodel. 

The factor system E /H  is called apartly invariant submodel of type (t~, 5) and is also denoted by H(o, 
~i). It is important that one and the same group H can generate partly invariant submodels of several 
different types. 

The solutions of the equations of a submodel H(~, ~5) are called partly invariant solutions (and, when 
= O, invariant solutions) of system E. 
A submodel H(o,  ~i) is said to be regular if the variables y in (3.2) are independent of u". Otherwise, 

it is said to be irregular [3]. 
In applications, instead of a group H, the Lie algebra L of the operators over the base space Rn+'~(x, 

u) corresponding to this group is considered. Suppose L has a dimension r and a basis of operators 

H a = ~ia(x,u)ax~ + ~ ( x , u ) 3 ,  (a--- 1 ..... r) (3.4) 

The dimension l of the universal invariant is defined in terms of a r × (n + m) matrix of the coordinates 
of the operators (3.4). If r* is the overall rank of this matrix, which is describable by the formula 

r, = o .  r. ( a,rla) (3.5) 

then I = n + m - r,, and relation (3.1) takes the form 

t ~ - 8 + n - r .  (3.6) 

The defect 8 must satisfy the inequalities 

max{r , -n ,  m - q ,  01, ~ 6 ~ m i n { r , - l ,  m - l }  (3.7) 

which follow from the preceding construction, where q is the overall rank of the Jacobian matrix 3I/bu. 
For example, the whole algebra LII with the basis (1.3) can be taken as L for the gas dynamics 

equations (n = 4, m = 5). In this case, formula (3.5) gives r. = 7 and I = (p,p), that is, q = 2. Inequalities 
(3.7) take the form 3 ~< ~i ~< 4, and it follows from (3.6) that ~ = ~i - 3. Hence, L n  can generate submodels 
of types (0, 3) and (1, 4). It is not difficult to show that an isobaric model (2.4) is obtained as a partly 
invariant submodel of type (0, 3) and either an isentropic model (2.3) or a thermal model (2.5) is obtained 
as a partly invariant submodel of type (1.4). 
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4. OPTIMAL SYSTEMS OF SUBALGEBRAS 

The implementation of the PODMODELI program for the gas dynamics equations involves taking 
account of all the admissible subalgebras, since each of them can produce some submodels. Moreover, 
the Lie algebra Lla contains infinitely many subalgebras. It has been pointed out [2] that not all the 
submodels obtained by this route are substantially different. Two submodels are said to be similar if 
one of them is obtained from the other by a certain reversible replacement of variables. It is found that 
this property is equivalent to the fact that the generating subalgebras are associated in an enveloping 
Lie algebra by the action of an internal automorphism of this algebra. 

The set of classes of associated subalgebras of a given Lie algebra L is called the optimal system of 
subalgebras and is denoted by OL. The actual classes are identified by their representatives from which 
OL is made up. Actually, there are also infinitely many classes but their representatives can be combined 
into convenient series containing a small number of parameters, and OL is actually the list of all such 
series, each of which is assumed to be a single representative, 

A sufficiently well tested algorithm [4] has been developed for calculating the optimal systems of 
subalgebras of finite dimensional Lie algebras. The optimal system OLH for the Lie algebra Zll with 
the basis (1.6) consisting of 220 representative [1, Table 6] was calculated for the first time using this 
algorithm. The optimal systems OL13 [5] consisting of 1342 representatives and OLin [6] consisting of 
1826 representatives were also calculated. 

A barely visible large collection (thousands) of possible, dissimilar submodels is thereby obtained 
for the gas dynamics equations. The new problem of searching for additional criteria for the ordering 
of this collection arose. 

5. INVARIANT SUBMODELS 

Submodels of the type (t~, 0) describe invariant solutions of the gas dynamics equations. By virtue 
of (3.6) and (3.7), they generate subalgebras with r. ~< 4 and have a rank t~ = 4 - r.. In the case of these 
submodels, the factor system reduces to a determined invariant subsystem, located in the involution. 
The equations of the factor system associate the partial derivatives of the required invariants with respect 
to three (~ = 3) or two (~ = 2) independent variables or they form a system of ordinary differential 
equations (o = 1). 

All submodels ofthe type (a, 0) (~ > 0) are distributed over two classes: of evolutionary form (E) or 
of stationary form (S). Class (E) is generated by those subalgebras for which the time t is an invariant 
while class (S) is generated by subalgebras for which t is not an invariant. The number of invariant 
submodels of different ranks (~ = 3, 2, 1 is shown in Table 1 for an equation of state of general form 
(GES) and for a polytropic gas (PG) with arbitrary "/. 

The actual form of writing the equations of a submodel which is generated by a subalgebra H depends 
on the choice of the invariants I in the representation of solution (3.3). It has been noted in [7] and 
subsequently rigorously proved in [8] that, with a suitable choice of invariants, the factor system for all 
invariant submodels of ranks (~ = 1, 2, 3 can be written in the same canonical form (which is different 
for classes (E) and (S)) and, in fact, 

RD'U+BV'P=f, D'R+Rdiv'U=g, D'S'=h (5.1) 

1 2 3 • with invariant velocity vectors U = ( U ,  U ,  U ), density R, pressure P and entropy S which are functions 
1 o of the invariant independent variables in class (E) and (y . . . . .  y ) in class (S). In the case of a general 

equation of state, this equation is P = F(R, S •) with the function F (1.2) while, for a polytropic gas, it 
has the form P = S'R ~. The differential operations of the gradient V', of total differentiation D • and 
divergence dixe solely act with respect to the corresponding independent variables For example, when 
o = 2, these operations have the form 

V' = (0yl, 0,0), D" = 0 t + UlOy.,, div'U = Uv ll 

in class(E) and 

in class (S). 

V'=(ay,,ay2,0),  D'=U'ay, +U2a>.2, div'U=Uly, +U2,2 
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Table 1 

3 2 1 

tr GES PG GES PG GES PG 

(E) 6 11 10 28 18 50 
(S) 7 18 16 73 21 124 

The elements of the 3 x 3 matrix 

I,,1 0 0 I B = B 22 

are solely functions of the invariant independent variables which depend on the submodel. The right- 
hand sides in (5.1) are functions of the invariants which are specific for each submodel and do not contain 
derivatives of the required functions. 

Note that not all of the submodels of rank 3 for a general equation of state presented in [1 ] are written 
in canonical form. 

It has also been established that all the invariants of a submodel have an equivalent representation 
in the form of a system ofinvariant integral laws of conservation of mass, momentum and energy [91. 

6. S U B M O D E L S  OF THE TYPE (0, 0) 

This type of invariant submodel is distinguished by the fact that the required invariants must be 
constants. Hence, the factor system which relates these constants consists of algebraic (and not 
differential) equations. The solutions of the gas dynamics equations, which are described by submodels 
of the type (0, 0), are called simple solutions. A constant solution belongs to such solutions, for example. 
Simple solutions are generated by four dimensional subalgebras L4 with the number (3.5) r. = 4. 

In the case of a general equation of state, all the simple solutions describe isobaric motions of a gas 
(2.4). In the case of a polytropic gas, out of the 290 representatives of L4 which are contained in OL13 , 
85 simple solutions are found to be generating and only 34 of them do not refer to the special gas motions 
(2.3)-(2.5). In the complete list of these 34 solutions which has been compiled, those solutions which 
depend substantially on four independent variables have been separated out. There are just eight non- 
similar submodels and they can be represented in the form of three subclasses [10]. 

For example, one of the simple solutions for a polytropic gas with Y = 3 in polar coordinates r, 0 
(y = r cos 0, z = r sin 0) with components of the velocity vector u (along the x axis), vr (the radial 
component) and v0 (the peripheral component) is given by the formulae 

1 r 
U=-l_t(x+Ur), Vr=0,  UO=l_tW (6.1) 

p = (I - l) -A-I rA-2e Ao/WR, p = (I - t) -A-3 rAe Ae/Wp 

where U, W and A are arbitrary constants and P/R = we~A, A > 0. The phenomenon of a collapse of 
the density (and pressure) is characteristic of this (and many other simple solutions). The trajectory of 
a gas particle which has "started out" at t = 0 from a point (x0, r0, 00) with the values P0, P0 is given by 
the equations 

x=(xo +Uro)(l-t)-Uro, r=ro, O=Oo + Wln(l-t) (6.2) 

which follow from (6.1), and this particle "bears" the values p = (1 - t )- lp0,p = (1 -t)-3p0 . The collapse 
occurs as t ~ 1 and, then, p ~ oo ( p ~  oo). It follows from (6.2) that the collapse manifoM is the conex 
= -Ur. All the gas particles which have "started out" at t = 0 from any point of a cylinder with r = r0 
and which remain on it when t > 0, executing an unbounded number of loops with an exponentially 
decaying step and a peripheral velocity which increases in an unbounded manner when t ~ i tend 
towards the intersection of this cone with the cylinder. 
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7. SYMMETRY OF INVARIANT S U B M O D E L S  

Each of the submodels mentioned above in Section 5 possesses a definite symmetry which can be 
calculated, regardless of the origin of the submodel, using the general algorithm for finding the Lie 
algebra of operators admitted by the system of differential equations [2]. Moreover, this symmetry is, 
at least partly, previously known by virtue of the following theorem [2]. Suppose a system E admits a 
Lie algebra L, the subalgebra H C L generates an invariant submodel E/H and NorLH is the normalizer 
of the subalgebra H in L. Then, the factor system E/H admits the factor algebra NorLH/H. 

It is established by direct calculation that, in the case of the majority of invariant submodels of the 
gas dynamics equations, the widest admissible Lie algebra is a direct sum of a factor algebra NorLH/H 
and a certain infinite dimensional Lie algebra L~ which arises on account of the reduction in the 
dimensionality of the subspace of the independent variables in the factor system E/H. 

The simplest example gives a submodel of the two-dimensional gas motions which is generated by 
the one dimensional subalgebra H = {X3} (transport along the z coordinate). Here, in the factor system, 
the component w of the velocity vector only occurs in the momentum equation Dw = 0 and the admissible 
operator X~ = q~(w)~w with an arbitrary function q~(w) is added to the normalizer. 

A non-trivial example of such an extension gives a submodel of the steady gas motions subject to the 
condition that, in the equation of state (1.2), the function F depends solely on the product pS, that is, 
for an equation of state of the form 

p = F(pS) (7.1) 

In this case, Loo is generated by the operator (found by Yu. A. Churkunov and the author) 

Z¢, = ~(S, B)(u i3=i - 2p~p) (7.2) 

where ~ is an arbitrary function of two variables and B is a Bernoulli function B = J u ] 2 + 2i with a 
specific enthalpy i = Sj(pS), where j(~) = ~ ~-ldf(~). An infinite Lie pseudogroup of transformations 
(u, p, p, S, B) ---> (u', p', p', S', B') corresponds to the operator (7.2) 

u'  = ~pu, p '  = ¢p-2p, p, = P, S' = ~02S, B' = cp2B (7.3) 

with an arbitrary function 9 = cp(S, B). The mapping (7.3) was pointed out for the first time by Munk 
and Prim [I1]. It enables one to transform any continuous steady-state solution with an equation of 
state (7.2) into either an isentropic solution (S = const.) or an isodynamic solution (B = const.). 

The calculation of the admissible operators in the case of invariant submodels of rank o = 3 is helped 
considerably by the property of "x-autonomy" which is inherent in them: the coordinates of these 
operators accompanying derivatives with respect to the independent variables are independent of the 
required functions. This is established by the use of the sufficient criterion of"x-autonomy", which holds 
for the class of certain systems of first-order quasilinear equations [12]. 

By considering any submodel of the gas dynamics equations as the "initial" model without a known 
symmetry, it is possible to seek its submodels. They are called the two-step submodels for the gas dynamics 
equations (1.1). The question arises here as to whether these two-step models contain all of the 
submodels in the initial collection f~ 

The answer is given by the "LOT lemma" [13] which holds for any system of differential equations 
E which admits a Lie algebra L. Suppose a subalgebra H C L generates an invariant submodel E/H 
and let the subalgebra 11" C NorLH/H. Then the subalgebra M C NorLH', for which/4' is the factor 
algebra M/H (M is the original of H'  in the case of the homomorphism NorLH ---> NortH/H), is uniquely 
defined. The system E admits M and it is assumed that the invariant submodel E/M exists. In its turn, 
the factor system E/H admits a subalgebra H" = M/H and it is assumed that the invariant submodel 
(E/H)/H" exists, which is also a two-step submodel for E. The LOT lemma establishes the equivalence 
of these submodels, which is written in the form of a symbolic equality 

(F.tthl(M~th = E l M  (7.4) 

Consequently, additional two-step submodels, which do not occur in the collection f~, can only appear 
in the case when they are generated by subalgebras which contain elements of extensions to the Lie 
algebra which are admitted by the submodels from f~. 
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8. PARTIALLY I N V A R I A N T  S U B M O D E L S  

There are significantly more submodels of the type (o, 8) with 8 > 0 than invariant submodels in 
view of the fact that, for each subalgebra H, the defect 8 can take several values (7.3) and, as has already 
been pointed out in Section 3, here there is no a priori constraint on the dimension of the generating 
subalgebra H. 

The specific feature of partially invariant submodels lies in the fact that, in these submodels, a part 
of the factor system E / H  is an overdetermined subsystem for the "superfluous" functions, and an analysis 
of its compatibility (its reduction to an involution) is required. Furthermore, in the case of a partially 
invariant submodel, its reduction to a smaller defect can occur. The phenomenon when a submodel H(o, 
fi) proves to be simultaneously a submodel H'(o, 5') of a generated subalgebra H'  C H of the same rank 
o but of a smaller defect 8' < 8 is referred to by this term. In particular, reduction of a partially invariant 
submodel to an invariant submodel with 8' = 0 is possible. 

Experience is constructing partially invariant submodels show that, the greater the defect 8, the more 
difficult it is to reduce the factor system E / H  to an involution. Hence, there is an urgent need for a 
priori tests for the reduction of a partially invariant submodel. At the present time, the following sufficient 
criterion of reduction is effectively used [2]. 

Suppose expressions of the form 

~U k lOx i = f ik(x ,u)  (i = 1 ..... n;k = 1 ..... m) (8.1) 

are obtained for a submodel H(o ,  8) when analysing the compatibility of the factor system E/H, using 
only algebraic operations and differentiation, for all derivatives of the required functions u = (u 1, . . . ,  
urn) with respect to all of the independent variables x = (x 1 . . . . .  x"). 

Then, any H(o, 6) solution will also be a H'(o, 0) solution with respect to a certain subalgebra H'  C H. 

9. R E G U L A R  PARTIALLY I N V A R I A N T  S U B M O D E L S  

In the collection of partially invariant submodels of relative simplicity, the regular submodels H(o, 
8) are picked out in which all of the o of the invariant independent variables in the factor system E / H  
depend solely on the initial independent variables. The separation of the regular partially invariant 
submodels is dictated by the fact that the number of these submodels for the gas dynamics equations 
is found to be completely visible, and the analysis of the compatibility of the overdetermined subsystems 
which arise is comparatively easy. 

A complete listing of the 100 subalgebras which generate regular partially invariant submodels for 
the equations of gas dynamics in the case of a general equation of state (1.2) (a sample from OLll)  is 
given in [14]. Invariant submodels, which are always regular, are included in this list. 

After eliminating invariant submodels from this list and, also, those which refer to the barochronous 
motions of the gas (2.4), 30 partially invariant submodels, which are not reduced, remain. All of them 
have been analysed. The description of submodels of types (3.1) and (2.2) has been published in [14], 
type (2.•) in [•5] and types (1.2) and (1.1) in [16]. A similar list of regular partially invariant submodels 
for a polytropic gas is being compiled. 

An example of a regular partially invariant submodel of type (1.2), which has not been published previously, is 
presented below. All the important factors in the analysis of regular partially invariant submodel are observed in 
this example. 

Example. A submodel which is generated by the five-dimensional algebra L 5 = {)(2, X3, X s, X6, )(10} with the 
universal invariant I = (x, u, p, S) is considered. For this submodel, the number (3.5) r, = 5 and it follows from 
relations (3.6) and (3.7) that the regular partially invariant submodel which is generated by this L 5 must be of type 
(1.2). 

Here, the solution is represented in the following way; the invariants u, P and S (and this also means the pressure 
p) must be functions solely of the coordinate x and the "superfluous" functions v, w can depend on all of the variables 
t, x, y, z. The factor system has the form 

puux +Px : 0 ,  uS x :0 ,  upx +p(u x +vy +wz) 

Du : 0 ,  Dw=O ( D : O  t +uO x +tr]y +WOz) 

It follows from the third equation that the quantity h = uy + wz is solely a function of the x coordinate. With the 
function h = h(x), the factor system decomposes into the invariant subsystem 
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puux +Px =0, uS x =0, upx +pu x +ph=0 (9.1) 

and the overdetermined subsystem for the "superfluous" ~ and w 

Du =0, Dw=0, V y + W  z =h (9.2) 

It is further assumed that u ~ 0 (isobaric solutions are obtained differently). 
In order to reduce system (9.2) to an involution, the operator D is applied to the third equation, which gives the rela- 

tion 2(uywz - u2wy) = uhx + h 2. Hence, urw z - u2wy depends solely on x, and the equation with the function k = k(x) 

vyw z -  vzwy = k (9.3) 

where 2k = uhx + h 2, is added to (9.2). Application of the operator D to (9.3) gives the closed relation ukx = -hk .  
So, the functions h and k, which have been additionally introduced, must satisfy the system of equations 

uhx + h2 = 2k, ukx + hk = O (9.4) 

By virtue of Eqs (9.4), the system of four equations (9.2) and (9.3) for the required u, w is in the involution. 
System (9.4) is integrated with the variable x (the time of motion of the gas particles along the x axis) which is 

introduced by the equation 

dxl dx = u(x) (9.5) 

and the general solution of system (9.4) is given by the formulae 

h = Q' IQ,  k = Q"I2Q,  Q = a 0 +alx +a2x 2 (9.6) 

where a0, al, a2 are arbitrary constants and primes indicate derivatives with respect to x. 
The invariant subsystem (9.1) is integrated in the form 

u 2 + 2i(p) = 2b,  p u Q  = q ,  S = const (9.7) 

with i(p) = ~ p-ldp and arbitrary constants b and q. Relations (9.5)-(9.7) determine (in implicit form) the required 
relations u(x) and p(x). 

It remains to solve the overdetermined system (9.2), (9.3). In order to do this, the Lagrangian coordinate ~ = 
t - x(x) is introduced with which this subsystem is integrated by linearizing it in the same way as was done in the 
case of the analogous overdetermined system, "canonical submodel of type (1.2)" in [14]. Finally, the solution is 
determined with an arbitrariness in two functions of a single argument. 

The resulting gas motions are "combined" from the two components: a steady-state one-dimensional motion in 
the direction of the x axis (with velocity u(x) and density p(x)) and a certain rather complex, transverse, unsteady 
motion in planes perpendicular to the x axis (with a velocity (u, w) which depends on t, ~, y, z). 

10. ON I R R E G U L A R  P A R T I A L L Y  I N V A R I A N T  S U B M O D E L S  

The possibility of constructing such submodels is significantly greater than the possibility of 
constructing regular submodels, since certain required functions also serve as independent variables 
in them. On the other  hand, the analysis of the overdetermined systems which arise here is much more 
complex and frequently turns out to be almost insuperable. The mult ip le  waves,  which are generated 
by the subalgebra L 4 = {Sl, S2, S3, Sl0} , where all of  the required functions are invariants, serves as 
a classical example of irregular partially invariant submodels for the gas dynamics equations. Here,  r. 
= 4, and ~ = 8 is obtained from (3.6) and the inequality 0 ~< 8 ~< 3 from (3.7). The type (0.0) gives a 
constant solution. A submodel of type (1.1) describes s imple  waves,  a submodel of type (2.2) describes 
double  waves  and a submodel of type (3.3) describes triple waves.  Of these, only the simple waves have 
been thoroughly studied. In particular, in the case of one-dimensional unsteady gas motions, these are 
Riemann waves and Prandtl-Mayer waves in the case of two-dimensional steady-state flows. As far as 
the double (and, even more so, the triple) waves are concerned, a complete description of these waves 
has still not been presented anywhere although a fairly large number of papers deal with various 
particular examples of such solutions [17, 18]. 

The principal difficulty lies in the fact that the reduction of the corresponding overdetermined systems 
to an involution requires quite high orders of extension of the systems of equations with partial derivatives 
with respect to four (or just three) independent variables. A tentative calculation shows the need for 
extension up to an order of greater than four, for which not only paper but also the memories of personal 
computers are not enough. 
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Matters are considerable simpler in the case of irregular partially invariant submodels of type (1.1), 
when the reduction to an involution reduces to calculating the commutators of first-order linear 
differential operators. One of the examples of such a partially invariant submodel is given in [19]. Four- 
dimensional subalgebras, for which ro = 4, mainly serve as candidates for the generation of irregular 
partially invariant submodels of type (1.1). There is quite a large number of such subalgebras (see Section 
6) and the discovery of new irregular partially invariant submodels continues at the present time. 

11. A C T U A L  S U B M O D E L S  

The PODMODELI  program envisages not only the study of the mathematical structures which arise 
for all submodels for the gas dynamics equations but also a more detailed representation of their physical 
content. In view of the abundance of submodels, such investigations have been carried out selectively 
up to now. 

Submodels describing isobaric [20], two-dimensional [21], spiral [22], spiral barochronous [23], 
rotational [4] and general barochronous [25, 26] gas motions have been qualitatively investigated (group 
classification, first integrals, representation of the general solution, singularities in the solutions, etc.). 

Individual submodels have been studied in greater detail. For instance, an example of a new regular 
partially invariant submodel of type (2.1), which is generated by a subalgebra of rotations, where the 
"superfluous" function is the angle made by the projection of the velocity vector onto a sphere with its 
meridians, is given in [27]. The construction of two-dimensional invariant (self-similar) solutions, which 
describe flows of a polytropic gas with close streamlines is considered in [28]. A non-trivial example of 
an irregular solution of type (1.1) for two-dimensional motions is given in [29]. A new invariant solution 
of type (1.0) has been investigated in [30]. Canonical forms of invariant submodels of rank two have 
been constructed for a general equation of state in [31]. 

12. C O N C L U S I O N  

The symmetry of the gas dynamics equations opens up the considerable possibility of discovering 
new gas motions which permit an exact description of the actual forms. The PODMODELI  program, 
which is aimed at the systematic utilization of this possibility, has demonstrated its fruitfulness. During 
the course of its implementation, a series of computer programs have been developed and used, together 
with the development of analytical methods, in particular, for deriving systems of defining equations, 
calculating the normalizers of subalgebras and constructing canonical forms of submodels. Work using 
the PODMODELI  program was initiated and is being continued by a group of researchers based at 
the M. A. Lavrent'yev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of 
Sciences. I wish to thank Yu. A. Chirkunov, A. A. Talyshev, S. V. Meleshko, S. V. Khabirov, A. P. 
Chupakhin, Ye. V. Mamontov, S. V. Golovin and A. A. Cherevko for the results of their investigations 
which they made available and have been used in this paper. 
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